Máy tính Casio
THƯ VIỆN TÍCH LUỸ TRỰC TUYẾN
THƯ VIỆN TÍCH LUỸ TRỰC TUYẾN
TRAO ĐỔI THÔNG TIN, TƯ LIỆU - TRÒ CHUYỆN - GÓP Ý
Đề TS10 chuyên Toán 2008-2009 (Quảng Nam)

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Cao Văn (trang riêng)
Ngày gửi: 06h:02' 01-06-2009
Dung lượng: 53.5 KB
Số lượt tải: 32
Nguồn:
Người gửi: Nguyễn Cao Văn (trang riêng)
Ngày gửi: 06h:02' 01-06-2009
Dung lượng: 53.5 KB
Số lượt tải: 32
Số lượt thích:
0 người
SỞ GIÁO DỤC VÀ ĐÀO TẠO
KỲ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN
QUẢNG NAM
Năm học 2008-2009
Môn TOÁN
Thời gian làm bài 150 phút ( không kể thời gian giao đề )
Bài 1 ( 1 điểm ):
a) Thực hiện phép tính: .
b) Tìm giá trị nhỏ nhất của biểu thức .
Bài 2 ( 1,5 điểm ):
Cho hệ phương trình:
a) Giải hệ phương trình khi .
b) Tìm giá trị của m để hệ phương trình đã cho có nghiệm (x; y) thỏa mãn hệ thức .
Bài 3 (1,5 điểm ):
a) Cho hàm số , có đồ thị là (P). Viết phương trình đường thẳng đi qua hai điểm M và N nằm trên (P) lần lượt có hoành độ là và 1.
b) Giải phương trình: .
Bài 4 ( 2 điểm ):
Cho hình thang ABCD (AB // CD), giao điểm hai đường chéo là O. Đường thẳng qua O song song với AB cắt AD và BC lần lượt tại M và N.
a) Chứng minh: .
b) Chứng minh:
c) Biết . Tính theo m và n (với , lần lượt là diện tích tam giác AOB, diện tích tam giác COD, diện tích tứ giác ABCD).
Bài 5 ( 3 điểm ): Cho đường tròn ( O; R ) và dây cung AB cố định không đi qua tâm O; C và D là hai điểm di động trên cung lớn AB sao cho AD và BC luôn song song. Gọi M là giao điểm của AC và BD. Chứng minh rằng:
a) Tứ giác AOMB là tứ giác nội tiếp.
b) OM BC.
c) Đường thẳng d đi qua M và song song với AD luôn đi qua một điểm cố định.
Bài 6 ( 1 điểm ):
a) Cho các số thực dương x; y. Chứng minh rằng:.
b) Cho n là số tự nhiên lớn hơn 1. Chứng minh rằng là hợp số.
======================= Hết =======================
KỲ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN
QUẢNG NAM
Năm học 2008-2009
Môn TOÁN
Thời gian làm bài 150 phút ( không kể thời gian giao đề )
Bài 1 ( 1 điểm ):
a) Thực hiện phép tính: .
b) Tìm giá trị nhỏ nhất của biểu thức .
Bài 2 ( 1,5 điểm ):
Cho hệ phương trình:
a) Giải hệ phương trình khi .
b) Tìm giá trị của m để hệ phương trình đã cho có nghiệm (x; y) thỏa mãn hệ thức .
Bài 3 (1,5 điểm ):
a) Cho hàm số , có đồ thị là (P). Viết phương trình đường thẳng đi qua hai điểm M và N nằm trên (P) lần lượt có hoành độ là và 1.
b) Giải phương trình: .
Bài 4 ( 2 điểm ):
Cho hình thang ABCD (AB // CD), giao điểm hai đường chéo là O. Đường thẳng qua O song song với AB cắt AD và BC lần lượt tại M và N.
a) Chứng minh: .
b) Chứng minh:
c) Biết . Tính theo m và n (với , lần lượt là diện tích tam giác AOB, diện tích tam giác COD, diện tích tứ giác ABCD).
Bài 5 ( 3 điểm ): Cho đường tròn ( O; R ) và dây cung AB cố định không đi qua tâm O; C và D là hai điểm di động trên cung lớn AB sao cho AD và BC luôn song song. Gọi M là giao điểm của AC và BD. Chứng minh rằng:
a) Tứ giác AOMB là tứ giác nội tiếp.
b) OM BC.
c) Đường thẳng d đi qua M và song song với AD luôn đi qua một điểm cố định.
Bài 6 ( 1 điểm ):
a) Cho các số thực dương x; y. Chứng minh rằng:.
b) Cho n là số tự nhiên lớn hơn 1. Chứng minh rằng là hợp số.
======================= Hết =======================
 
Các ý kiến mới nhất